
# 7 Left Over Bottles of Krypton Gas in Physics Dept.

K. C. Wu 9/30/10



# Krypton, bottles and isolation valves

- Krypton is a rare gas
- Bottles CTC/DOT 3AL2015
- Isolation valves THERMO 2558, Cowin, L.A. Ca.
- A pressure gauge with 60 psi / 400 KPa is installed on top hat, but not connected to the bottles
- Each bottle has ~ 8 inch O.D. and ~ 48 inch height
- · Bottles have flat bottom

### A chart on some gas cylinders

| CYLINI<br>SIZE | DOT<br>SPECIFICATION | NOMINAL DIMENSIONS     | TARE<br>WEIGHT         | INTERNAL<br>VOLUME                   | REMARKS            |
|----------------|----------------------|------------------------|------------------------|--------------------------------------|--------------------|
| 49             | 3AA2400              | 24x140 cm.<br>9x55 in. | 61 kgs.<br>135 lbs.    | 49.5 liters<br>3020 in. <sup>3</sup> | Steel              |
| 44             | 3AA2265              | 23x130 cm.<br>9x51 in. | 52 kgs.<br>115 lbs.    | 43.9 liters<br>2680 in. <sup>3</sup> | Steel              |
| <b>-→</b> 30   | 3AL2015              | 20x122 cm.<br>8x48 in. | 22 kgs.<br>48 lbs.     | 29.5 liters<br>1800 in. <sup>3</sup> | Aluminum           |
| 16             | 3AA2015              | 18x84 cm.<br>7x33 in.  | 21 kgs.<br>47 lbs.     | 16.4 liters<br>1000 in. <sup>3</sup> | Steel              |
| 8              | 3AA2015              | 18x46 cm.<br>7x18 in.  | 11 kgs.<br>24 lbs.     | 7.8 liters<br>475 in. <sup>3</sup>   | Steel              |
| 6              | 3AL2216              | 18x40 cm.<br>7x16 in.  | 7 kgs.<br>15 lbs.      | 5.9 liters<br>360 in. <sup>3</sup>   | Aluminum           |
| 3              | 3AA2015              | 10x43 cm.<br>4x17 in.  | 4 kgs.<br>9 lbs.       | 2.8 liters<br>172 in. <sup>3</sup>   | Steel              |
| LB             | 3E1800               | 5x30 cm.<br>2x12 in.   | 0.75 kgs.<br>1.70 lbs. | 0.46 liters<br>28.4 in. <sup>3</sup> | Steel              |
| SSLB           | 3E1800               | 5x30 cm.<br>2x12 in.   | 0.75 kgs.<br>1.7 lbs.  | 0.46 liters<br>28.4 in. <sup>3</sup> | Stainless<br>Steel |
| .150           | 3E1800               | 4x23 cm.<br>1.5x9 in.  | 0.6 kgs.<br>1.4 lbs.   | 0.15 liters<br>9.2 in. <sup>3</sup>  | Stainless<br>Steel |
| .075           | 3E1800               | 4x13 cm.<br>1.5x5 in.  | 0.34 kgs.<br>0.75 lbs. | 0.075 liters<br>4.6 in. <sup>3</sup> | Stainless<br>Steel |

#### **High-Pressure Aluminum Gas Cylinders** High-Pressure Aluminum Gas Cylinders There are many different gas cylinder options available for packaging of Air Liquide specialty gas products. While most of our gas cylinders remain the property of Air Liquide, we also fill customer-owned cylinders provided they meet all appropriate safety requirements Outside **HP** Aluminum Approximate Capacity Water Volume†† DOT Cylinder Size inches lbs cu. in 2216 6909 9.8 33 15.6 16AL 3AL 2216 83 2350 7.25 30 958 15.7 7AL 3AL 2216 878 6.9 360 5.9 3AL PS 3AL 227 4.4 10.5 103 2015 3.5 1.7 8 1AL PS † For N<sub>2</sub> at 70°F 1 atm. † Nominal. Inst Resale cylinder only. 60"

#### Amount of Krypton in Physics Dept.

The 7 bottles of Krypton gas left from the 2001 experiment have been investigated. These bottles are DOT 3AL2015 Aluminum bottles. Each bottle has a nominal dimension of 8 inch OD and 48 inch height. Each bottle has an internal volume of 29.5 Liter.

From the P&I D and also confirmed by A. Hoffmann, each of these 7 bottles has an isolation valve on top and were connected together using a manifold above the top hat (no longer connected). Today, August uses a gas bottle regulator to measure pressures in each bottle. All show a pressure slightly above 1600 psi.

The volume at ambient temperature and pressure of Kr is approximately 138 times that at 1600 psi. Thus, the amount of Kr stored in the 7 bottles equals  $\sim 7 \times 29.5 \times 138 \sim 28,000$  Liter.

As a side note, this Kr gas is equivalent to ~ 38 L of liquid Kr.

#### Price and "Condition" of Krypton – p1

1.2 / L for 7,500 L (~\$9,000) of Kr in a 44 L size bottle at ~ 130 bar -9/27/10

Per Pavel Perlov Global Director of Business Development Electronic Fluorocarbons, LLC tel. +1-508-435-7700 fax +1-508-625-1368 mobile: +1-617-592-3820

email: pavel@electronicfluorocarbons.com

\$1.6 / L for 1  $\rightarrow$  5,000 L and \$1.4 / L for > 5,000 L, \$1.3 / L > 10,000 L and \$1.25 / L > 20,000 L - 10/1/10

Scientific Grade?, Per Gerry Isenberg CTS Welco

Tel. 973-477-7145 Conversation with a representative of CTS Welco, (representing Praxair), scientific grade Kr has a shelf life of 60 months. Don't know the detailed, but one probably could assume Kr in the 7 bottles for  $\sim$  20 years may not be 99.999% pure.

#### Price and "Condition" of Krypton – p2

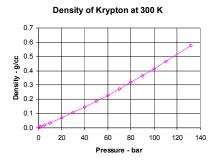
Robert Pisani has the setup to transfer the gasses to another bottle. In addition he sent Mike a quote for the non research grade krypton that was \$7500 for a Size 1 cylinder (10k ltr) so, it has value. There is a possibility that Spectra gases may buy it from us in exchange for a credit. (\$ 0.75 / L?)

#### From BNL buyer J. Cafiero 10/1/2010

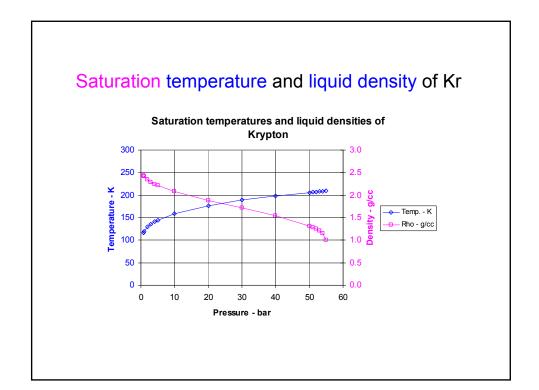
Yes I deal with Gerry for stock cylinders for a lot of other chemicals used here. Ok I received the pricing for various quantities which are listed below, so the cost per cylinder will vary based on the volume you are looking for. I can also have the rental and delivery fees waived, so the total PO cost would be for the Krypton only.

0 to 5000 Liters @\$ 1.60 5001 liters to 10,000 Liters @ \$1.40 10,001 liters to 20,000 liters @ \$1.30 > 20,001 liters and above @ \$1.25

#### Estimated Value of Krypton in Physics Dept.

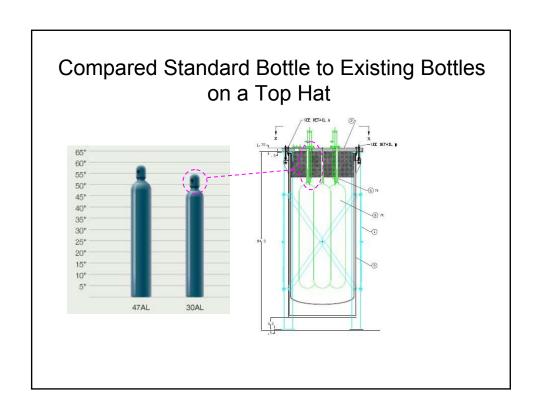

Today, August uses a gas bottle regulator to measure pressures in each bottle. All show a pressure slightly above 1600 psi.

The volume at ambient temperature and pressure of Kr is approximately 138 times that at 1600 psi. Thus, amount of Kr stored in the 7 bottles equals  $\sim 7 \times 29.5 \times 138 \sim 28,000$  Liter.


According to the business director of Electronic Fluorocarbons, the price equals  $\sim \$1.2/L$  for 7500 L of 99.888% Kr in a 44 L bottle ( $\sim 130$  bar), or  $\sim \$9,000$  to the bottle. For 99.99% Kr, the price is slightly lower (4 – 9%). These are the purchase price. In order words, we need  $\sim \$33,000$  to buy 28,000 L of Kr today. As an independent check on price, the price Rob has for UHP (99.995%) grade is lower  $\sim \$0.75$  / L from other vendor.

### Density of Kr as a function of pressure at 300 K

| P     | Т   | Р     | rho     | Р     |
|-------|-----|-------|---------|-------|
| bar   | K   | kPa   | g/cc    | psi   |
| 1     | 300 | 100   | 0.00337 | 14.5  |
| 2     | 300 | 200   | 0.00675 | 29.0  |
| 5     | 300 | 500   | 0.01697 | 72.6  |
| 10    | 300 | 1000  | 0.03430 | 145.1 |
| 20    | 300 | 2000  | 0.07004 | 290.2 |
| 30    | 300 | 3000  | 0.107   | 435.3 |
| 40    | 300 | 4000  | 0.146   | 580.4 |
| 50    | 300 | 5000  | 0.187   | 725.5 |
| 60    | 300 | 6000  | 0.229   | 870.6 |
| 70    | 300 | 7000  | 0.273   | 1016  |
| 80    | 300 | 8000  | 0.319   | 1161  |
| 90    | 300 | 9000  | 0.366   | 1306  |
| 100   | 300 | 10000 | 0.415   | 1451  |
| 110   | 300 | 11000 | 0.465   | 1596  |
| 131.6 | 300 | 13163 | 0.577   | 1910  |




Note: 1 L of Kr → 3.37 gm



### **Bottles and Gas Transfer**

 The following slides show modification made on existing gas bottle and mechanisms of transfer gas without a pump



## **CGA Valve Fittings**

CGA Valve Fittings - Gases G through K

| GAS                                             | CGA Valve Outlet &<br>Connection |
|-------------------------------------------------|----------------------------------|
| "Genetron 21" (Dichlorofluoromethane)           | 660                              |
| "Genetron 23" (Fluoroform)                      | 660                              |
| "Genetron<br>115" (Monochloropentafluoroethane) | 660                              |
| "Genetron 152A" (1, 1-Difluoroethane)           | 510                              |
| "Genetron 1132A" (1, 1-Difluoroethylene)        | 350                              |
| Germane                                         | 350                              |
| Helium                                          | 580                              |
| Hexafluoroacetone                               | 330                              |
| Hexafluoropropylene                             | 660                              |
| Hydrogen                                        | 350                              |
| Hydrogen Bromide                                | 330                              |
| Hydrogen Chloride                               | 330                              |
| Hydrogen Fluoride                               | 670                              |
| Hydrogen Selenide                               | 350                              |
| Hydrogen Sulfide                                | 330                              |
| lodine Pentafluoride                            | 670                              |
| Isobutane                                       | 510                              |
| Isobutylene                                     | 510                              |
| Krypton                                         | 580                              |

### Gas Cylinder Safety - p1

# Lessons Learned: Compressed Gas Cylinders Not Properly Stored

Effective Date: Sep 29, 2010 Point of Contact: Edward Sierra Identifier: 2010-OR-BWY12-0403 Provide Feedback

#### **Lessons Learned Statement:**

When compressed gas cylinders are not properly stored, it results in unsafe conditions that have the potential for injury to workers.

#### Discussion of Activities:

An Independent Assessment, Pressure Safety Program and Compressed Gas Cylinder Safety, was conducted at Y-12 National Security Complex/Production Facilities in September of 2009 to assess the effectiveness of implementation of the identified pressure safety and compressed gas cylinder safety procedures associated with the programs.

Emphasis was placed on the inspection and test of the pressure vessels and systems and the storage and handling of compressed gas cylinders.

The assessment identified several locations where compressed gas cylinders were not in compliance with Y73-400, Compressed Gas Cylinder Safety.

## Gas Cylinder Safety – p2

#### Analysis:

The results of the Independent Assessment indentified the following:

- Cylinders stored without protective valve caps.
- Charged (Full) and empty compressed gas cylinders were not stored separately which made it cumbersome for delivery personnel to readily pickup and deliver cylinders in several locations.
- Cylinders were found missing the Compressed Gas Association label and/or other labeling identifying the gas within the cylinder in several different locations.
- 4. Legacy cylinders identified.
- 5. Storage issues identified:
  - Cylinders were inappropriately nested.
  - Cylinders were found improperly stored or secured.
  - · Cylinders not properly secured with chains.
  - Unknown and non-compatible gas cylinders were not segregated
  - Cylinders improperly secured or stored in the upright position.
- 6. Cylinders stored in front of electrical panels.
- Wooden skids of cylinders were stored on the ground where they were subject to being stuck by vehicular traffic.
- 8. At one location, storage of small compressed gas cylinders containing Oxygen and Acetylene as well as two portable Oxygen and Acetylene welding rigs were observed being stored together.

# Transfer Kr gas from 7 x 29.5 L bottles to 5 x 43.9 L ones

| res - psi | <b>29.5 L</b><br>BO)1                 |                                                                                                                  |                                                                                                                                                                                      |                                                                                                                                                                                                                                                  | ) L                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------|---------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| roe nei   |                                       | BO)2                                                                                                             | BO)3                                                                                                                                                                                 | BO)4                                                                                                                                                                                                                                             | BO)5                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BO)6                                                                                                                                                                                                                                                                                                                                                                                   | BO)7                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ics - psi | 1600                                  | 1600                                                                                                             | 1600                                                                                                                                                                                 | 1600                                                                                                                                                                                                                                             | 1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1600                                                                                                                                                                                                                                                                                                                                                                                   | 1600                                                                                                                                                                                                                                                                                                                                                                                                                       | 1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0         | 643                                   | 1028                                                                                                             | 1258                                                                                                                                                                                 | 1395                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           | BO)1                                  | BO)2                                                                                                             | BO)3                                                                                                                                                                                 | BO)4                                                                                                                                                                                                                                             | BO)5                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BO)6                                                                                                                                                                                                                                                                                                                                                                                   | BO)7                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| res - psi | 643                                   | 1028                                                                                                             | 1258                                                                                                                                                                                 | 1395                                                                                                                                                                                                                                             | 1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1600                                                                                                                                                                                                                                                                                                                                                                                   | 1600                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0         | 258                                   | 568                                                                                                              | 845                                                                                                                                                                                  | 1066                                                                                                                                                                                                                                             | 1281                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1409                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           | BO)1                                  | BO)2                                                                                                             | BO)3                                                                                                                                                                                 | BO)4                                                                                                                                                                                                                                             | BO)5                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BO)6                                                                                                                                                                                                                                                                                                                                                                                   | BO)7                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| res - psi | 258                                   | 568                                                                                                              | 845                                                                                                                                                                                  | 1066                                                                                                                                                                                                                                             | 1281                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1409                                                                                                                                                                                                                                                                                                                                                                                   | 1600                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0         | 104                                   | 290                                                                                                              | 513                                                                                                                                                                                  | 735                                                                                                                                                                                                                                              | 955                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1137                                                                                                                                                                                                                                                                                                                                                                                   | 1323                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           | BO)1                                  | BO)2                                                                                                             | BO)3                                                                                                                                                                                 | BO)4                                                                                                                                                                                                                                             | BO)5                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BO)6                                                                                                                                                                                                                                                                                                                                                                                   | BO)7                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| res - psi | 104                                   | 290                                                                                                              | 513                                                                                                                                                                                  | 735                                                                                                                                                                                                                                              | 955                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1137                                                                                                                                                                                                                                                                                                                                                                                   | 1323                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0         | 42                                    | 142                                                                                                              | 291                                                                                                                                                                                  | 470                                                                                                                                                                                                                                              | 665                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 854                                                                                                                                                                                                                                                                                                                                                                                    | 1043                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           | BO)1                                  | BO)2                                                                                                             | BO)3                                                                                                                                                                                 | BO)4                                                                                                                                                                                                                                             | BO)5                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BO)6                                                                                                                                                                                                                                                                                                                                                                                   | BO)7                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| res - psi | 42                                    | 142                                                                                                              | 291                                                                                                                                                                                  | 470                                                                                                                                                                                                                                              | 665                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 854                                                                                                                                                                                                                                                                                                                                                                                    | 1043                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0 .       | 17                                    | 67                                                                                                               | 157                                                                                                                                                                                  | 283                                                                                                                                                                                                                                              | 436                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 604                                                                                                                                                                                                                                                                                                                                                                                    | 781                                                                                                                                                                                                                                                                                                                                                                                                                        | 1190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>a</b>  | BO\1                                  | BO)2                                                                                                             | BU/3                                                                                                                                                                                 | BO)4                                                                                                                                                                                                                                             | BO)5                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BO)6                                                                                                                                                                                                                                                                                                                                                                                   | BO\7                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| _         | ,                                     | ,                                                                                                                | ,                                                                                                                                                                                    | ,                                                                                                                                                                                                                                                | 436                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 604                                                                                                                                                                                                                                                                                                                                                                                    | ,                                                                                                                                                                                                                                                                                                                                                                                                                          | 335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | o o o o o o o o o o o o o o o o o o o | 0 643  BO)1  res - psi 643 0 258  BO)1  res - psi 258 0 104  res - psi 104 0 42  BO)1  res - psi 42 0 17  g BO)1 | 0 643 1028  BO)1 BO)2  res - psi 643 1028 0 258 568  BO)1 BO)2  res - psi 258 568 0 104 290  BO)1 BO)2  res - psi 104 290 0 42 142  BO)1 BO)2  res - psi 42 142 0 17 67  g BO)1 BO)2 | BO)1 BO)2 BO)3  res - psi 643 1028 1258  BO)1 BO)2 BO)3  res - psi 643 1028 1258  BO)1 BO)2 BO)3  res - psi 258 568 845  0 104 290 513  BO)1 BO)2 BO)3  res - psi 104 290 513  0 42 142 291  res - psi 42 142 291  0 17 67 157  g BO)1 BO)2 BO)3 | BO)1 BO)2 BO)3 BO)4  tres - psi 643 1028 1258 1395  BO)1 BO)2 BO)3 BO)4  tres - psi 643 1028 1258 1395  BO)1 BO)2 BO)3 BO)4  tres - psi 258 568 845 1066  BO)1 BO)2 BO)3 BO)4  tres - psi 104 290 513 735  BO)1 BO)2 BO)3 BO)4  tres - psi 104 290 513 735  BO)1 BO)2 BO)3 BO)4  tres - psi 42 142 291 470  BO)1 BO)2 BO)3 BO)4 | BO)1 BO)2 BO)3 BO)4 BO)5  BO)1 BO)2 BO)3 BO)4 BO)5  Tres - psi 643 1028 1258 1395 1600 0 258 568 845 1066 1281  BO)1 BO)2 BO)3 BO)4 BO)5  Tres - psi 258 568 845 1066 1281 0 104 290 513 735 955  BO)1 BO)2 BO)3 BO)4 BO)5  Tres - psi 104 290 513 735 955 0 42 142 291 470 665  BO)1 BO)2 BO)3 BO)4 BO)5  Tres - psi 42 142 291 470 665 0 17 67 157 283 436  BO)1 BO)2 BO)3 BO)4 BO)5 | BO)1 BO)2 BO)3 BO)4 BO)5 BO)6  BO)1 BO)2 BO)3 BO)4 BO)5 BO)6  Tres - psi 643 1028 1258 1395 1600 1600 0 258 568 845 1066 1281 1409  BO)1 BO)2 BO)3 BO)4 BO)5 BO)6  Tres - psi 258 568 845 1066 1281 1409 0 104 290 513 735 955 1137  BO)1 BO)2 BO)3 BO)4 BO)5 BO)6  Tres - psi 104 290 513 735 955 1137 0 42 142 291 470 665 854  Tres - psi 42 142 291 470 665 854 0 17 67 157 283 436 604  BO)1 BO)2 BO)3 BO)4 BO)5 BO)6 | BO)1 BO)2 BO)3 BO)4 BO)5 BO)6 BO)7  res - psi 643 1028 1258 1395  BO)1 BO)2 BO)3 BO)4 BO)5 BO)6 BO)7  res - psi 643 1028 1258 1395 1600 1600 1600  BO)1 BO)2 BO)3 BO)4 BO)5 BO)6 BO)7  res - psi 258 568 845 1066 1281 1409 1600  0 104 290 513 735 955 1137 1323  BO)1 BO)2 BO)3 BO)4 BO)5 BO)6 BO)7  res - psi 104 290 513 735 955 1137 1323  res - psi 104 290 513 735 955 1137 1323  BO)1 BO)2 BO)3 BO)4 BO)5 BO)6 BO)7  res - psi 42 142 291 470 665 854 1043  res - psi 42 142 291 470 665 854 1043  res - psi 42 142 291 470 665 854 1043  g BO)1 BO)2 BO)3 BO)4 BO)5 BO)6 BO)7 |

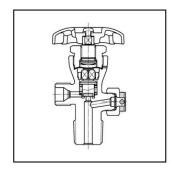
# Transfer Kr gas from 7 x 29.5 L bottles to 7 x 29.5 L ones

| sring K   | r gas from 7 | 7 old bottles | to 7 new b | ottles |      |      |      |      |      |
|-----------|--------------|---------------|------------|--------|------|------|------|------|------|
| Old bot   | tles         | 29.5 L        | New bot    | tles   | 29.5 | i L  |      |      |      |
| Initially |              | BO)1          | BO)2       | BO)3   | BO)4 | BO)5 | BO)6 | BO)7 |      |
|           | Pres - psi   | 1600          | 1600       | 1600   | 1600 | 1600 | 1600 | 1600 | 1600 |
| BN)1      | 0            | 800           | 1200       | 1400   | 1500 |      |      |      |      |
|           |              |               |            |        |      |      |      |      |      |
|           |              | BO)1          | BO)2       | BO)3   | BO)4 | BO)5 | BO)6 | BO)7 |      |
|           | Pres - psi   | 800           | 1200       | 1400   | 1500 | 1600 | 1600 | 1600 |      |
| BN)2      | 0            | 400           | 800        | 1100   | 1300 | 1450 |      |      |      |
|           |              |               |            |        |      |      |      |      |      |
|           |              | BO)1          | BO)2       | BO)3   | BO)4 | BO)5 | BO)6 | BO)7 |      |
|           | Pres - psi   | 400           | 800        | 1100   | 1300 | 1450 | 1600 | 1600 |      |
| BN)3      | 0            | 200           | 500        | 800    | 1050 | 1250 | 1425 |      |      |
|           |              | 5014          | 5010       | 5010   | 5014 | 5015 | 5010 | 0017 |      |
|           |              | BO)1          | BO)2       | BO)3   | BO)4 | BO)5 | BO)6 | BO)7 |      |
| DNI) 4    | Pres - psi   | 200           | 500        | 800    | 1050 | 1250 | 1425 | 1600 |      |
| BN)4      | 0            | 100           | 300        | 550    | 800  | 1025 | 1225 | 1413 |      |
|           |              | BO)1          | BO)2       | BO)3   | BO)4 | BO)5 | BO)6 | BO)7 |      |
|           | Pres - psi   | 100           | 300        | 550    | 800  | 1025 | 1225 | 1413 |      |
| BN)5      | 0            | 50            | 175        | 363    | 581  | 803  | 1014 | 1213 |      |
| ,-        | Ü            | 00            |            | 000    |      | 000  |      |      |      |
|           |              | BO)1          | BO)2       | BO)3   | BO)4 | BO)5 | BO)6 | BO)7 |      |
|           | Pres - psi   | 5Ó            | 175        | 363    | 581  | 803  | 1014 | 1213 |      |
| BN)6      | 0            | 25            | 100        | 231    | 406  | 605  | 809  | 1011 |      |
|           |              |               |            |        |      |      |      |      |      |
|           |              | BO)1          | BO)2       | BO)3   | BO)4 | BO)5 | BO)6 | BO)7 |      |
|           | Pres - psi   | 25            | 100        | 231    | 406  | 605  | 809  | 1011 |      |
| BN)7      | 0            | 13            | 56         | 144    | 275  | 440  | 625  | 818  | 1261 |
|           |              |               |            |        |      |      |      |      |      |
| Remain    |              | BO)1          | BO)2       | BO)3   | BO)4 | BO)5 | BO)6 | BO)7 |      |
|           | Pres - psi   | 13            | 56         | 144    | 275  | 440  | 625  | 818  | 339  |

# Other information

• The following slides are for references.

# **Physical Constants of Kr**


| PHYSICAL CON                                        | ISTANTS                                   |
|-----------------------------------------------------|-------------------------------------------|
| Chemical name                                       | Kr                                        |
| Molecular weight                                    | 83.80                                     |
| Density of the gas at 70°F (21,1°C), 1 atm          | 0.2172 lb/ft3, 3.479 kg/m3                |
| Specific gravity of the gas at 70°F (21,1°C), 1 atm | 2.899                                     |
| Specific volume of the gas at 70°F (21,1°C), 1 atm  | 4.604 ft3/lb, 0.287 m3/kg                 |
| Boiling point at 1 atm                              | -244.0°F, -153.4°C                        |
| Melting point at 1 atm                              | –251°F, −157°C                            |
| Critical temperature at 1 atm                       | -82.8°F, -63.8°C                          |
| Critical pressure                                   | 798.0 psia, 55.02 bar                     |
| Critical density                                    | 56.7 lb/ft3, 908 kg/m3                    |
| Triple point                                        | -251.3°F, -157.4°C                        |
| Latent heat of vaporization at normal boiling point | 46.2 Btu/lb, 107.5 kJ/kg                  |
| Latent heat of fusion at triple point               | 8.41 Btu/lb, 19.57 kJ/kg                  |
| Specific heat of the gas at 70∘F (21,1∘C), 1 atm Cp | 0.060 Btu/(lb) (°F)<br>0.251 kJ/(kg) (°C) |
| Cv                                                  | 0.035 Btu/(lb) (°F)<br>0.146 kJ/(kg) (°C) |

## Shipping Data - Kr

|                                 | SHIPPING DATA                 |  |  |  |  |  |
|---------------------------------|-------------------------------|--|--|--|--|--|
| Synonyms                        | Kr                            |  |  |  |  |  |
| CAS Register Number             | 7439-90-9                     |  |  |  |  |  |
| DOT Classification              | Nonflammable gas              |  |  |  |  |  |
| DOT Label                       | Nonflammable gas              |  |  |  |  |  |
| Transport Canada Classification | 2.2                           |  |  |  |  |  |
| Substance Identification (SI)   | 1056                          |  |  |  |  |  |
| UN Number                       | UN 1056                       |  |  |  |  |  |
| Hazards                         | High Pressure and suffocation |  |  |  |  |  |
| Toxicity (TLV)                  | Asphyxiant                    |  |  |  |  |  |
| Flammability Range (in air)     | Nonflammable gas              |  |  |  |  |  |
| Odor                            | None                          |  |  |  |  |  |

#### New Thermo Valve

- Available with a wide range of CGA Outlets
   Available with a cap type safety assembly having fuse metal backed or non-backed copper rupture discs
   In full compliance with CGA and DOT regulations.
- regulations



- Seat material: 15% glass filled Kel-F (Neoflon, Daiflon)
   Optional seat material: Pure Kel-F (Neoflon, Daiflon)

Nylon Vespel

Vespel

• Below usually held in stock at Thermo for rapid shipment:

CGA 580 with 3775 psi unbacked safety assembly

CGA 580 with 4000 psi unbacked safety assembly

CGA 590 with 3775 psi unbacked safety assembly

CGA 350 with 3775 psi 165°F fusible backed safety assembly

CGA 350 with 4000 psi 165°F fusible backed safety assembly

### RIX oil-free compressor to ~ 2200 psi

Microboost High Pressure Oxygen Compressors Check up to five results to perform an action.

- Maximum Horsepower. 0.5 HP
   Max Discharge Pressure: 2,200 PSIG
   Flow Ranges: 46 16 SCFH
   Cooling: AIR
   GAS: 02, He, N2, OTHER DRY GASES

RIX Oxygen Compressors have been developed specifically for the exacting requirements of safe, reliable oxygen compression service. The Microboost Series incorporates design features developed over several decades for a variety of industrial and military oxygen compressor applications. These compressors are well suitled for the compression of oxygen, helium nitrogen, and other clean, dry gases to 2200 psig. The RIX Microboost high-pressure oxygen compressor will fill up to 25 "D" cylinders (15 cu fl / 425 Liters) in a 24-hour period.

The Microboost is a three-stage reciprocaling compressor employing a stepped, oil-free piston. The crankshaft is driven via a speed reducing gearbox on a vertical design crankcase. Heat exchangers, crankcase and compression cylinders are air-cooled.

- High pressure for Oxygen, Helium, Nitrogen and other dry gases including cylinder fill applications.
   Discharge Pressure to 2200 PSIG (152 Barg)

#### Take a Look at Our Microboost Brochure





# Gas Cylinder Comparison Chart

#### Gas Cylinder Comparison Chart

| Air Liquide  | Scott | Airgas | Linde | Matheson | Praxair |
|--------------|-------|--------|-------|----------|---------|
| 47AL         | KAL   | 2      | 2     |          | AT      |
| 47AL<br>30AL | AL    | 150A   | A31   | 1R       | AS      |
| 16AL         | BL    | 80A    | A16   | 2R       | AQ      |
| 7AL          | CL    | 33A    | A07   | 3R       | AG      |
| 3AL          | -     | -      | -     |          | A3      |
| 1AL          | -     | 1-1    | 100   | 1 - 1    | -       |

# Cylinder Comparison Chart - Airgas

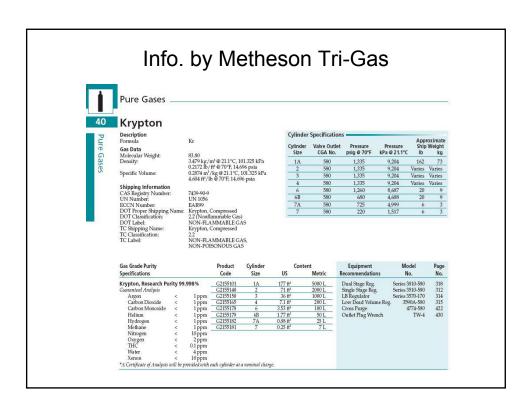
## **Appendix**

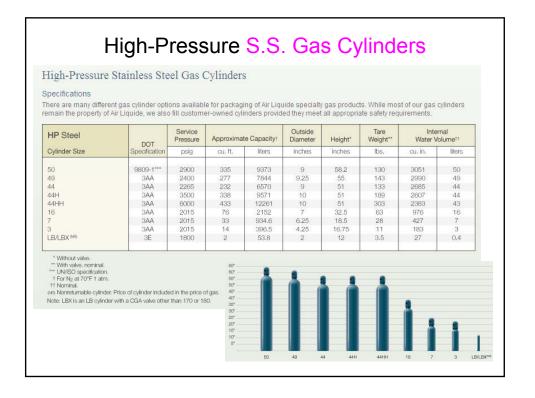
# Airgas.

### **Specialty Gas Cylinder Size Comparison Chart**

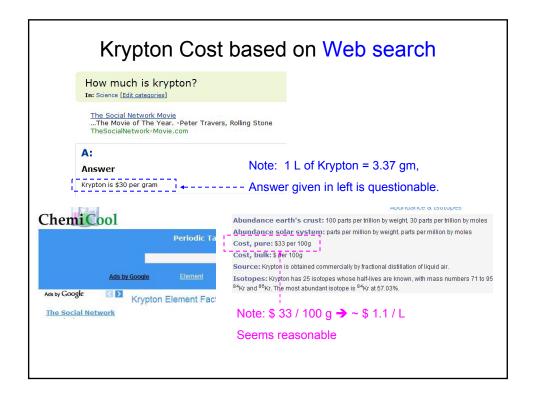
| Approximate<br>Dimensions (inches) | Airgas | Linde | Air<br>Liquide | Praxair | Matheson<br>Trigas | MG    | Scott<br>Specialty<br>Gases |
|------------------------------------|--------|-------|----------------|---------|--------------------|-------|-----------------------------|
| High Pressure Steel                |        |       |                |         |                    |       |                             |
| 9 x 55                             | 300    | 049   | 49             | Т       | 1L                 | 300   | K                           |
| 9 x 51                             | 200    | 044   | 44             | K       | 1A                 | 200   | A                           |
| 7 x 33                             | 80     | 016   | 16             | Q       | 2                  | 80    | В                           |
| 7 x 19                             | 35     | 007   | 7              | G       | 3                  | 35    | С                           |
| 2 x 12                             | LB     | LBR   | LB             | LB      | LB                 | LB    | LB                          |
| 4 x 26                             | E      | 005   | MEDE           | ANE     | 3L                 | E     | ER                          |
| 10 x 51                            | 3HP    | 485   | 44H            | 6K      | 10                 | 3HP   | 19-8                        |
| 9 x 51                             | 2HP    | -     | 44H            | зк      | 1H                 | 2HP   |                             |
| Aluminum                           |        |       |                |         |                    |       |                             |
| 10 x 52                            | 300A   | _     | AT             |         | _                  |       | _                           |
| 8 x 48                             | 150A   | A31   | 30AL           | AS      | 1R                 | 150AL | AL                          |
| 7 x 33                             | 80A    | A16   | 22AL           | AQ      | 2R                 | AAL   | BL                          |
| 7 x 16                             | 33A    | A07   | 7AL            | AG      | 3R                 | 33AL  | CL                          |
| 4.5 x 15                           | 9A     | -     | 9AL            | -       | -                  | 9AL   |                             |

# Cylinder Comparison Chart – Matheson Tri-Gas


Introduction \_


#### **Cylinder Information**


#### **Cylinder Comparison Chart**


|           | son Trl-Gas | Nominal    | Material of  |        |        |             |       |              |         |
|-----------|-------------|------------|--------------|--------|--------|-------------|-------|--------------|---------|
| Specialty | Electronics | Dimensions | Construction | AGT    | Airgas | Air Liquide | Linde | Air Products | Praxair |
| B1        |             | 30x53      | S            | 1/2Ton |        |             |       | A-5          | HT      |
| 1F        |             | 15x50      | S            | LP30   | 350    | 110         | 110   | A-1          | PX/FX   |
|           |             | 12x43      | S            | LP15   | 65     | 55          |       | A-3          | FC      |
| HF        |             | 12x18      | S            | LP05   | 25     | 22LP        |       |              |         |
|           |             | 9x36       | S            | LP05   |        |             |       |              |         |
|           |             | 8x9        | S            | LP01   |        |             |       |              |         |
| 1L        | QK          | 9x55       | S            | 49     | 300    | 49          | 049   | A            | T       |
| 1A        | QA          | 9x51       | S            | 44     | 200    | 44          | 044   | В            | K       |
| 1R        | QX          | 8x48       | A            | 29AL   | 150A   | 30AL        |       | B(AL)        | AS      |
| 2         | GA          | 9x26       | S            | 16     | 80     | 16          | 016   | C            | Q       |
| 2R        | GX          | 7x33       | A            | 16AL   | 80A    | 22AL        |       | C(AL)        | AQ      |
| 3         | UA          | 6x19       | S            | 7      | 35     | 7           | 007   | D-1          | G       |
| 3R        | UX          | 7x16       | A            | 6AL    | 33A    | 7AL         |       | D-1(AL)      | AG      |
| 4         | JA          | 4x13       | S            | 3      | 10     | 3           | 003   | D            | F       |
| LB        |             | 2x12       | S            | LB     |        | LB          |       | LB           | LB      |

A= Aluminum; S= Steel









## Krypton Gas

Pure Gas: Krypton

#### DESCRIPTION

Krypton is a rare atmospheric gas which is odorless, colorless, tasteless, nontoxic, monatomic and chemically inert. The concentration of Krypton in the atmosphere by volume percent is 1.1 x 10-4. Krypton is principally shipped and used in gaseous form for excimer lasers, light bulbs, window insulation and R & D laboratory research. Spectra Gases Material Safety Data Sheets (MSDS) are available for Krypton gas and should be used as guidelines in regard to first aid, methods of storage, handling and general use of Krypton.

| PURITY SPECIFICATIONS (MAXIMUM IMPURITY LEVELS)* |                        |                   |  |  |  |  |
|--------------------------------------------------|------------------------|-------------------|--|--|--|--|
| Contaminant                                      | Research Grade 99.999% | UHP Grade 99.995% |  |  |  |  |
| Argon (Ar)                                       | 2.0 ppm                | 3.0 ppm           |  |  |  |  |
| Carbon Dioxide (CO <sub>2</sub> )                | 0.5 ppm                | 1.0 ppm           |  |  |  |  |
| Carbon Tetrafluoride (CF <sub>4</sub> )          | 0.5 ppm                | 1.0 ppm           |  |  |  |  |
| Hydrogen (H₂)                                    | 0.5 ppm                | 3.0 ppm           |  |  |  |  |
| Krypton (Kr)                                     | 0.5 ppm                | 1.0 ppm           |  |  |  |  |
| Neon (Ne)                                        | 0.5 ppm                | 3.0 ppm           |  |  |  |  |
| Nitrogen (N <sub>2</sub> )                       | 2.0 ppm                | 3.0 ppm           |  |  |  |  |
| Oxygen (O <sub>2</sub> )                         | 0.1 ppm                | 1.0 ppm           |  |  |  |  |
| Water (H <sub>2</sub> 0)                         | 0.2ppm                 | 1.0 ppm           |  |  |  |  |
| Xenon                                            | 5.0 ppm                | 25.0 ppm          |  |  |  |  |

<sup>\*</sup> Higher purities are available upon request.

# Info. By Spectra Gases

|                          | CYLINDER INFORMATION |               |                  |                        |                      |  |  |  |  |
|--------------------------|----------------------|---------------|------------------|------------------------|----------------------|--|--|--|--|
| Purity                   | Cylinder Size*       | Valve Outlet* | Volume<br>Liters | Gross Weight<br>Lbs/Kg | Pressure<br>Psig/Bar |  |  |  |  |
|                          | 1                    | 580           | 10000            | 213 / 97               | 2300 / 160           |  |  |  |  |
|                          | 2                    | 580           | 5000             | 155 / 70               | 1350 / 94            |  |  |  |  |
| Decemb Condo             | 3                    | 580           | 2000             | 63 / 29                | 1500 / 104           |  |  |  |  |
| Research Grade           | 4                    | 580           | 1000             | 31 / 14                | 1450 / 101           |  |  |  |  |
|                          | 5                    | 580           | 500              | 16/ 7                  | 2000 / 139           |  |  |  |  |
|                          | LB                   | 580/170       | 50               | 6/3                    | 1400 / 98            |  |  |  |  |
|                          | 1                    | 580           | 10000            | 213 / 97               | 2300 / 160           |  |  |  |  |
|                          | 2                    | 580           | 5000             | 155 / 70               | 1350 / 94            |  |  |  |  |
| IIIID C I                | 3                    | 580           | 2000             | 63 / 29                | 1500 / 104           |  |  |  |  |
| UHP Grade                | 4                    | 580           | 1000             | 31 / 14                | 1450 / 101           |  |  |  |  |
|                          | 5                    | 580           | 500              | 16/ 7                  | 2000 / 139           |  |  |  |  |
|                          | LB                   | 580/170       | 50               | 6/3                    | 1400 / 98            |  |  |  |  |
|                          | D1                   | 580           | 400              | 16/7                   | 1300 / 91            |  |  |  |  |
|                          | D2                   | 580           | 200              | 11/5                   | 1050 / 73            |  |  |  |  |
|                          | D2                   | 580           | 100              | 10/5                   | 575 / 41             |  |  |  |  |
| Non-Refillable Cylinders | D3                   | 580           | 50               | 7/3                    | 675 / 48             |  |  |  |  |
| *                        | D3                   | 580           | 25               | 6/3                    | 350 / 25             |  |  |  |  |
|                          | D7                   | 580           | 20               | 3/1                    | 240 / 18             |  |  |  |  |
|                          | D7                   | 580           | 12               | 3/1                    | 140 / 11             |  |  |  |  |

<sup>\*</sup> Additional cylinder sized and/or valve outlets are available upon request.

(Continued)



Branchburg, New Jersey 08876 USA. tel: 1.908.252.9300. toll free: (US & Canada) 1.800.932.0624. www.spectragases.com

4



# Thermo Valve (new type?)

#### **G55 Brass Diaphragm Valves For Specialty Gases**



- Forged Brass body and brass internal components for high purity gases
   Five (5) Phosphor Bronze diaphragms for high vacuum and high pressure integrity
   Designed for easy open and easy close operation

# Info. on some common gas

| Spec vol at 70°F<br>and 1 atm ►<br>cylinder<br>designation ▼ | NH <sub>3</sub><br>22.5 ft <sup>3</sup> /lb |         | Ar<br>9.7 ft <sup>3</sup> /lb |       | <b>He</b><br>96.7 ft <sup>3</sup> /lb |      | 8.74 ft <sup>3</sup> /lb |     | H <sub>2</sub><br>192.0 ft <sup>3</sup> /lb |      | N <sub>2</sub><br>13.8 ft <sup>3</sup> /lb |      | O <sub>2</sub><br>12.1 ft <sup>3</sup> /lb |      | Air<br>13.3 ft <sup>3</sup> /lb |      |
|--------------------------------------------------------------|---------------------------------------------|---------|-------------------------------|-------|---------------------------------------|------|--------------------------|-----|---------------------------------------------|------|--------------------------------------------|------|--------------------------------------------|------|---------------------------------|------|
|                                                              |                                             |         |                               |       |                                       |      |                          |     |                                             |      |                                            |      |                                            |      |                                 |      |
|                                                              | AA                                          | 15 x 52 | 114                           |       |                                       |      |                          |     |                                             |      |                                            |      |                                            |      |                                 |      |
| A                                                            | 10 x 49                                     | 114     | 9 x 55                        | 2640  | 9 x 55                                | 2640 |                          |     | 9 x 55                                      | 2640 | 9 x 55                                     | 2640 | 9 x 55                                     | 2640 | 9 x 55                          | 2640 |
| A(AL)                                                        |                                             |         | 10 x 52                       | 2000  |                                       |      |                          |     |                                             |      | 10 x 52                                    | 2200 |                                            |      |                                 |      |
| В                                                            | 9 x 51                                      | 114     | 9 x 51                        | 2490  | 9 x 51                                | 2490 | 9 x 51                   | 830 | 9 x 51                                      | 2265 | 9 x 51                                     | 2492 |                                            |      |                                 |      |
| B (AL)                                                       | 8 x 48                                      | 114     | 8 x 48                        | 2000  |                                       |      | 8 x 48                   | 830 | 8 x 48                                      | 2000 | 8 x 48                                     | 2000 |                                            |      | 8 x 48                          | 2000 |
| BX                                                           |                                             |         | 10 x 51                       | 6000  | 10 x 51                               | 6000 |                          |     | 10 x 51                                     | 6000 | 10 x 51                                    | 6000 |                                            |      |                                 |      |
| BY                                                           |                                             |         | 9 x 51                        | 3500  | 9 x 51                                | 3500 |                          |     | 9 x 51                                      | 3500 | 9 x 51                                     | 3500 |                                            |      |                                 |      |
| С                                                            | 8 x 22                                      | 114     | 7 x 33                        | 2215  | 7 × 33                                | 2215 |                          |     | 7 × 33                                      | 2015 | 7 x 33                                     | 2015 | 7 x 33                                     | 2215 | 7 × 33                          | 2215 |
| D                                                            |                                             |         | 4 x 17                        | 2215  | 4 x 17                                | 2215 | 4 x 17                   | 830 | 4 x 17                                      | 2015 | 4 x 17                                     | 2015 | 4 x 17                                     | 2215 |                                 |      |
| D-1                                                          | 7x 19                                       | 114     | 7 x 16                        | 2000  |                                       |      |                          |     | 7 x 19                                      | 2015 |                                            |      |                                            |      |                                 |      |
| D-1 (AL)                                                     | 7 x 16                                      | 114     |                               |       |                                       |      |                          |     |                                             |      |                                            |      |                                            |      |                                 |      |
| D                                                            | 4 x 17                                      | 114     |                               |       |                                       |      |                          |     |                                             |      |                                            |      |                                            |      |                                 |      |
| L.B.                                                         |                                             |         | 2 x 12                        | 1,800 | 2 x 12                                | 1800 |                          |     |                                             |      | 2 x 12                                     | 1800 | 2 x 12                                     | 1800 |                                 |      |
| L.B.I.                                                       | 2 x 12                                      | 114     |                               |       |                                       |      |                          |     |                                             |      |                                            |      |                                            |      |                                 |      |
| 4X(AL)-100                                                   |                                             |         | 4 x 10                        | 850   | 4 x 10                                | 900  |                          |     | 4 x 10                                      | 2000 | 4 x 10                                     | 850  | 4 x 10                                     | 850  |                                 |      |
| 4X(AL)-50                                                    |                                             |         | 4 x 10                        | 425   |                                       |      |                          |     |                                             |      | 4 x 10                                     | 425  |                                            |      |                                 |      |

# Info. on some common gas

| gas           | NH <sub>3</sub>  | Ar                | He                                                          | CO <sub>2</sub>                                                                                                                            | H <sub>2</sub>                                                      | N <sub>2</sub>                                                       | 02                                                                              | Air                                                                  |  |
|---------------|------------------|-------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------|--|
| color/odor    | none/strong      | none/none         | none/none                                                   | none/none                                                                                                                                  | none/none                                                           | none/none                                                            | none/none                                                                       | none/none                                                            |  |
| flamm         | mod              | not               | not                                                         | not                                                                                                                                        | YES 4 75%                                                           | not                                                                  |                                                                                 | **                                                                   |  |
| Toxic         | yes              | asphyxiant        | asphyxiant                                                  | asphyxiant                                                                                                                                 | asphyxiant                                                          | asphyxiant                                                           | *                                                                               |                                                                      |  |
| TWA           | 25 ppm (ACGIH)   | none              |                                                             | 5,000 ppm (ACGIH)                                                                                                                          |                                                                     |                                                                      |                                                                                 |                                                                      |  |
| MW            | 17.03            | 39.95             | 4.003                                                       | 44.01                                                                                                                                      | 2.016                                                               | 28.01                                                                | 32.00                                                                           |                                                                      |  |
| DOT Haz Class | Nonfam Gas (2.2) | Nonflam Gas (2.2) | Nonfam Gas (2.2)                                            | Nonfam Gas (2.2)                                                                                                                           | Flam Gas (2.1)                                                      | Nonfam Gas (2.2)                                                     | Nonflam Gas (2.2)                                                               | Nonflam Gas (2.2)                                                    |  |
| DOT Label     | Nonflammable Gas | Nonflammable Gas  | Nonfammable Gas                                             | Nonflammable Gas                                                                                                                           | Flammable Gas                                                       | Nonfammable Gas                                                      | Oxidizer and<br>Nonfammable Gas                                                 | Nonflammable Gas                                                     |  |
| DOT ID No.    | UN 1005          | UN 1006           | UN 1046                                                     | UN 1013                                                                                                                                    | UN 1049                                                             | UN 1066                                                              | UN 1072                                                                         | UN 1002                                                              |  |
| CAS No.       | 7664-4-7         | 7440-37-1         | 7440-59-7                                                   | 124-38-9                                                                                                                                   | 1333-74-0                                                           | 7727-37-9                                                            | 7782-44-7                                                                       |                                                                      |  |
| Compatible    | 101101           |                   | Noncorrosive; most common structural materials can be used. | Noncorrosive; most<br>common structural<br>materials can be<br>used. If molisture is<br>present, materials<br>must resist carbonic<br>acid | Noncorrosive; most<br>common structural<br>materials can be<br>used | Noncorrosive; most<br>common structural<br>materials can be<br>used. | Noncorrosive;<br>structural materials<br>must be suitable for<br>oxygen service | Noncorrosive; most<br>common structural<br>materials can be<br>used. |  |

<sup>\*</sup> Strong oxidizer, regarded as non-toxic, but exposure to high concentrations adversely affects pulmonary and central nervous systems. Supports and vigorously accelerates combustion avoid all contact with oil, grease, or other combustible or flammable materials.

<sup>\*\*</sup> At high pressure can accelerate the burning of combustible and flammable materials